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ON THE THEORY OF PULSE DISCHARGE IN A LIQUID
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The time dependence of the electric power of underwater discharges
is nearly linear during the first quarter-period. This paper presents

the equations of energy, particle number, and channel expansion
rate under this condition. It is shown that there exists a steady regime
of channel expansion and shock propagation with constant character-
istic properties, and the values of these properties are found,

1. The occurrence of a pulse discharge in a liquid
is accompanied by the penetration of liquid particles
into the arc channel. The channel constitutes a sys -
tem with a variable number of particles. This is in-
dicated by investigations of the underwater explosion
of electrical wires [1], as well as by the fact that
the pressure inside the expanding channel remains
constant for a certain time, the temperature of the
plasma changing insignificantly [2].

The penetration of the liquid particles into the
channel is associated with the heating of the liquid
at the periphery of the channel. This heating is
mainly due to collisions between plasma and liquid
particles; the contribution of radiation and three-par-
ticle recombinations cannot be significant. Due to the
heating there appears between the plasma and the
liquid a gas layer which loses particles to the chan-
nel, where these undergo further heating, dissocia-
tion, and partial ionization.

The rate at which particles penetrate into the
channel is proportional to the rate of energy transfer
by collisions at the periphery of the channel, and is
inversely proportional to the energy of formation of
the gas per particle. The rate of transfer of energy
from the i-th component of the plasma is
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Here Nj is the number of particles of the i-th com-
ponent, uj is their mean thermal speed, m and m; are
the masses of a liquid molecule and a plasma par-
ticle, respectively, a is the channel radius, and Ag;
is the mean amount of energy transferred during one
collision. From (1.1) and the gas -kinetic formula

z = !/,uN/V, which determines the number of colli-
sions of the molecules with a unit area per unit
time, we obtain the rate of penetration of the parti-
cles into the channel
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where q is the energy of formation of the gas per
particle.

The theoretical calculation of the coefficient % is
unreliable, since it involves quite arbitrary assump-
tions, However, this coefficient can be found from
any set of experimental data which can be used to

draw a discharge power curve and to determine a

characteristic of the channel. Using the experimen-

tal data of Skvortsov et al. {2], we obtain ® = 1/24.
2. The energy supplied by the electrical circuit

.to the underwater spark channel goes towards the

increase of the internal energy of the channel, the

-formation of the shock wave, and radiation; the

radiation losses are minor. Analysis of current and
voltage oscillograms of the discharge indicates that
during the first quarter-period the time -dependence
of the power dissipated is linear [3]:

W, = 71, (2. 1)

At moderate degrees of ionization the mean energy
of a plasma particle is '

== 3 kT +eq /v,

where v is the number of atoms in a molecule of the
liquid and g4 is the dissociation energy per molecule,
The change of the internal energy of the channel per
unit time is then

wi = (Ne)’ = 3 kN'T + YkNT' + N'eg/v. (2.2)

The power transmitted to the shock wave is
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where a' is the speed of expansion of the channel.
From shock theory it can be shown that one half

of this power is expended in compressing the liquid
and the other half is expended in setting it in mo-
tion. Equations (1.2), (2.1), (2.2), and (2.3) yield
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The system (2.4) contains three unknown functions
(N,NT, a) and can be closed by the equations of
hydrodynamics.

3. Due to their high nonlinearity, the equations of
hydrodynamics cannot be used here in their general
form, with boundary conditions at the channel boun -
dary and at the shock front. One simplification is
provided by the experimental fact that the speed of
expansion of the channel is constant during the
first quarter-period [2]. The effect of the expanding
channel on the liquid is the same as that of an ex-
panding cylindrical piston. Self-similar problems
involving an expanding piston have been treated by
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several authors [4,6]. In the self-similar problems
the transformation to dimensionless variables
transforms the equations of hydrodynamics into a
system of ordinary differential equations. However,
these equations cannot be integrated analytically
even in the case of constant piston speed, Thus
another simplification is required, for which we
shall use the incompressibility of the liquid between
the channel and the shock wave. In this region the
liquid is compressed by the effect of the shock wave
and subsequent density changes may be neglected
[2.

Assuming incompressibility, the integration of
the hydrodynamic equations yields the pressure
field
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where p, is the pressure in the channel, py is the
density of the undisturbed liquid, and R is the radial
coordinate of the shock front,

The motion of the channel boundary is directly
related to the propagation of the shock front. The
impulse transmitted by the channel to the surround-
ing liquid per unit time is equal to the change of
momentum of the liquid between the channel and
the shock wave. The momentum integral necessarily
converges, since it extends only up to the shock
front. The equation for the rate of change of momen-
fum is
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where u is the velocity of the fluid particles. From

(3.2) we have
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The solution to the self-similar problem of the
motion of a fluid pushed by a uniformly moving pis -
ton shows that the shock wave also propagates at a
constant velocity and that the pressure at the shock

front is constant, Experimental data on shocks
generated by underwater explosions also show that
the speed of propagation of the shock front is con-
stant when the channel expands at a constant speed
[2]. Thus, in (3.1) and (3.3) we may take a" = 0,

a/R = a'/D, so that after expanding the logarithm
we obtain
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The first equation in (3. 4) shows that when the
channel expands with a constant speed the pressure at
the shock wave is lower than that in the channel. From
the Rankine-Hugoniot relations and the equation of
continuity of an incompressible fluid we obtain
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(u is the particle velocity at the wavefront),

Substituting (3.5) into (3.4), we obtain two quadratic
equations for the wavefront speed D. Equating the
coefficients of these equations, we obtain the equa- -
tion for the speed of expansions of the channel:
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4. The pressure in the channel can be written in
the form
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Hence, taking account of (3.6) and of the fact that the
expansion speed is constant, we obtain
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Solving (2.4) for NT and equating the result with (4.1),
we obtain an equation for a':

e

In the denominator of the left-hand side of (4.2) we
can neglect the second term. Then

’
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Table 1

., 1, Y a’, N particles, iNs N Pg, 5
w/see | cm | w/seem) | m/sec | TR 1y o5 o0 |sec Tl em 2| om3 Jkg/em

102 | 3 3.3.108 | 188 | 10000 | 2.2.108 5408 | 2.9.10m | 400
5-1012 3 1.7.401 280 13 000 9.3.101 1.4-10% 5.4-1G2 | 1000

10 3 3.3-101 330 14 600 1.7.10% 2.2-10% 7.0-10% | 1500
5101 3 1.7-4018 500 - 19000 7.2.40% 5.9.10% 1.3.10n 3600

1014 3 3.3-10u 600 21 200 1.3-102 9.0-1028 1.7.401 | 5000
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which, substituted into the solution of (2.4), yvields
the temperature of the plasma in the channel
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The last equation shows that the temperature of
the plasma remains constant when the power supplied
by the circuit to the channel increases linearly.
For discharges commonly used in practice, the ratio
v, varies in the range 3 » 105-3 - 10% W/(sec » m),
which corresponds to temperatures 10°—2 + 10%° K.
By reducing the inductance of the circuit to 0.26 pH,
Martin [1] has obtained the value v, = 1.3 + 10¥ w/
(sec + m), which corresponds to a calculated tem-
perature 2.72 « 10 K, The channel temperature is
a relatively weak function of . This explains the
fact the braking of the discharge by means of an in-
ductance does not significantly reduce the tem-
perature.

Table 2

!

Yoo p¢,2 D, _ fig»
w/(sec m) | kg/cm m/sec %

3.3.1018 364 1600 24.2
1.7.10% 820 . 1690 26.8
3.3.101¢ 1450 1750 27.4
1.7.1018 2620 2000 30.2
3.3-1018 3640 2140 30.4

The solution of (2.4) yields the number of par-
ticles in the channel
(rs) i22
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and the particle flux density »
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The flux density of the particles entering the chan~

nel is quite high, of the order of 10%-10% sec™ x

x ecm™% From (4.3) and (4. 5) we obtain the particle

density in the channel

S .1 @1
2¢4 /% + 5kf" (12"

According to (4.7), the particle density in the
plasma is constant when the electric power increas -
es linearly, The decrease of density due to the

expansion of the channel is compensated by the influx
of particles through the channel boundary. The par-
ticle density is of the order of 102°=10% ¢m=3 and is
more dependent on the value of y, than the tempera-
ture.

The pressure of the plasma is given by the ex-
pression )

1.8 po’/zkf% (Tl)%
2eq /v + 5k (1)

(4.8)

For y; = const the pressure inside the channel remains constant
during the expansion process, due to the fact that the temperature and
the particle density remain constant. Under ordinary conditions the
pressure is of the order of 102--103kg/cm2 , with higher values in the
case of stronger variation of the power pulse, The pressure is a
stronger function of y, than the particle density, and much stronger
than the temperature, Therefore in the case of discharges braked by
inductance low pressures are obtained with relatively high tempera-
tures,

From (4. 3)—(4. 8} it follows that for constant rate of increase of
electric power there exists a steady regime of channel expansion, with
constant values of temperature, particle density, plasma pressure, and
speed of expansion. Under these conditions the shock front propagates
at a constant speed with a constant pressure.

Such a regime (or a similar one) is established by underwater
sparks from the instant of formation of the underwater channel to the
instant at which maximum electric power is reached. The shock
front and the region next to it are formed during this period. The
trapezoidal form of the pressure in the shock wave is due to the
steady expansion regime.

5. For pulse discharge in water, substitution of

the appropriate numerical values in (4.3)—(4.8)
yields the following design formulas:

& =17.910"% m/sec,T = 561,%°K, (5.1)

182

N = 4.3.10;19_#3’9.10_2171% particles, (5.2)
= 4.3-107 fi/;.m-?l n' sec”m™,  (5.3)
r 4.3.10—;9‘:-7;5;/.210*2} '’ ™, ©-9
Pa= 410 Ll ‘N/m?  (5.5)

4.3-10710 - 3,9.40-2L'y, fs

In these formulas [y,] = W/sec¢ + m). Table 1 shows
the results of calculations for several values of
Y1, appropriate for pulse devices with 7 =3 em.

Table 3

— Calc,
. Circuit parameters " - Measured | Exptl, Theor. f:):]

Ret. kv | uf | pH cm w/sec |w(sec m)| quantity value value eq.
I'1 | 25 | 5.8(0,26| 1.5 1.9.101 A0 | T, °K 30.000 | 27.200 | (5.2)
[ 40 | 277 1.5 | 1.3.4012 4018 | ¢/, m/sec 200 240 | (5.1)
{’l 40 | 2717 1.5 [1.3.10 | 8.6.108 | D, m/sec 1600 1630 | (6.6)
* 8 | 150 | 2 7 2.4013 | 2.8.1018 | ¢’, m/sec 140 180 | (5.1)
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6. The constancy of the values of the speed and
the pressure of the shock wave is due to the flux
of energy from the channel to the shock front
through the compressed liquid.

From (3.5) and (4.3) we obtain the pressure at
the shock front

pe="spo 2. (6.1)

Substituting (3.5) into Kirkwood and Bethe's [7]
equation for shock waves in liquids

D=cy+Y(n+1NDu

yields an equation for the shock speed D, The solu-
tion of this equation is
] } oo = (32} ’ (6.2)
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Here ¢y is the speed of sound in the undisturbed
fluid n is an exponent in the equation of state of the
fluid,

According to (6.2), the speed of the shock wave
during the steady channe! expansion regime usually
lies in the range 1600—2000 m/sec, slowly increas -
ing with increasing v,.

After the electric power has reached its maximum,
the values of the characteristic properties (T, n, pg)
decrease, and the energy transmitted to the shock
front decreases, resulting in a decrease of its speed
and pressure, The subsequent motion of the front
is governed mainly by the dissipation of the energy
of the wave.

When the characteristics of the channel and the
pressure at the shock front during the steady ex-
pansion regime depend only on 74, then the pressure
of the wave at some distance away from the channel
depends also on the duration of the period of power
increase T.

In many cases the variation of the circuit para-
meters v, L, C, I may lead to opposite changes of
the values of v and 7. In such cases the pressure
at the wave far away from the channel will not
undergo significant changes, despite the fact that
the characteristics of the channel may change quite
considerably.

Substituting into (6.1) and (6.2) the numerical
values for water, we obtain

pp=6.41"% N/m? (6.3)
D=751402{1 + (1 + 4.4-10" 1,7} m/sec. (6.4)

7. Regarded as a mechanism for transforming
electrical energy into shock wave energy, underwater
sparks are characterized by the electro-hydrodyna -
mic efficiency, defined as the ratio of the energy of
the shock wave to the electrical energy supplied to
the channel by the circuit.

Under the steady channel expansion regime v, =
= const, equations (2.1), (2.3), (4.4), and (4.5) yield
the electrohydrodynamic efficiency

Qef sy,
T 7.1
€ 20, /% -k 5kfp @1

According to (7.1), under ordinary conditions 7
in the range 25-30%. In 2 it was mentioned that one
half of the energy supplied to the shock wave takes
the form of compression energy, and the other half
takes the form of kinetic energy.

For underwater discharges equation (7.1) takes
the form

S L et (7.2)
.ng 43107194 3.9. 4072t %

Equations (7, 1) and (7. 2) determine 1, only for the increasing
part of the pulse and cannot be used to ca%culate the overall efficien-
cy. Electrical energy is transformed into hydrodynamic energy
throughout the whole period during which energy is supplied to the
circuit, But in addition to that hydrodynamic energy is also created
from part of the energy of the gas layer in the course of the processes
occuring after the pulse discharge.

Table 2 shows the results of calculations according to (8. 3),
(6.4), and (7. 2).

A system of equations for the rate of expansion of the channel and
for the pressure in it was obtained by a different method by Ioffe et al.

[81.

8. The theoretical calcualtions are compared with the experi-
mental data of several investigators in Table 3.

The author wishes to thank N. A. Roi and D, P.
Frolov for making available to him their experi-
mental data.
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